
FROM DOMAIN-DRIVEN DESIGN

TO MICROSERVICE APIS

OF QUALITY AND STYLE:

CONTEXT, CONTRACTS,

COMPONENTS

Prof. Dr. Olaf Zimmermann (ZIO)

Certified Distinguished (Chief/Lead) IT Architect

Institute für Software, HSR FHO

ozimmerm@hsr.ch

GI-Arbeitskreis Microservices und DevOps

Berlin, March 9, 2020

Teaser Question (not from AppArch Lecture Exam at HSR FHO)

 You have been tasked to develop a RESTful HTTP API for a master data

management system that stores customer records and allows sales staff to

report and analyze customer behavior. The system is implemented in Java

and Spring. A backend B2B channel uses message queues (RabbitMQ).

 What do you do?

a) I hand over to my software engineers and students because all I manage to

do these days is attend meetings and write funding proposals.

b) I annotate the existing Java interfaces with @POST and @GET, as defined in

Spring MVC, JAX-RS etc. and let libraries and frameworks finish the job.

c) I install an API gateway product in Kubernetes and hire a sys admin, done.

d) I design a service layer (Remote Facade with Data Transfer Objects) and

publish an Open API Specification (f.k.a. Swagger) contract. I worry about

message sizes, transaction boundaries, error handling and coupling criteria

while implementing the contract. To resolve such issues, I create my own

novel solutions. Writing infrastructure code and test cases is fun after all!

e) ___ ?

© Olaf Zimmermann, 2020.

Page 2

Agenda Today (And Key Take Away Messages)

1. Context matters

 One size does not fit all (top-level design heuristic: "it depends")

 Strategic and tactic Domain-Driven Design (DDD)

 Context Mapper DSL and tools

2. Contracts rule

 Unified interfaces are great, but not enough

 More SOA and microservices myth busting

 Microservice Domain-Specific Language (MDSL)

3. Components contain (cost and risk)

 Towards a context-driven, contract-first service identification method

 Microservice API Patterns (MAP) to structure the solution space

 (time permitting) Industry trends and resulting research questions

 Microfrontends, containerization, cloud-native 12-factor applications

© Olaf Zimmermann, 2020.

Page 3

SOA 1.0: Order Management Application (Telecommunications)

© Olaf Zimmermann, 2020.

Page 4

Reference: IBM,

ECOWS 2007

Context Matters

© Olaf Zimmermann, 2020.

Page 5

Agile practices

Professional services methods

Experience reports

https://files.ifi.uzh.ch/rerg/amadeus/teaching/courses/it_architekturen_hs08/5_Developing_a_solution_architecture.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7217770

 Many design issues, typically recurring

 per system/team

Policies reference
customer data

Data and control flow direction?

Data formats (norms, transformations)?

Frequency of message exchange?

“Fictitious” Insurance Application/Integration Landscape

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 6

Design issue

(decision required)

Data duplication and/or

on-demand exchange?

Strict/eventual consistency?

Realization/ and procurement

(sourcing, staffing):

Buy? Build? Rent?

Technology? Vendor? Team?

Subdomain,
System, Team

, per relationship, per interface

Client influence on API design and

stability/evolution (governance)?

API contracts and technologies?

System

decomposition?

Domain-Driven Design (DDD) Overview

 Emphasizes need for modeling and communication

 Ubiquitous language (vocabulary) – the domain model

 Tactic DDD – “Object-Oriented Analysis and Design
(OOAD) done right”

 Emphasis on business logic in layered architecture

 Decomposes Domain Model pattern from M. Fowler

 Patterns for common roles, e.g. Entity, Value Object,

Repository, Factory, Service; grouped into Aggregates

 Strategic DDD – “agile Enterprise Architecture

and/or Portfolio Management”

 Models have boundaries

 Teams, systems and

their relations shown in

Context Maps of

Bounded Contexts

Page 7

© Olaf Zimmermann, 2020.

https://martinfowler.com/eaaCatalog/domainModel.html

A Strategic DDD Context Map with Relationships

 Insurance scenario, example model from https://contextmapper.org/

Page 8

© Stefan Kapferer, Olaf Zimmermann, 2020.

D: Downstream, U: Upstream; ACL: Anti-Corruption Layer, OHS: Open Host Service

Bounded
Context

https://contextmapper.org/
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
http://www.methodsandtools.com/archive/archive.php?id=97

Context Mapper: A DSL for Strategic DDD

 Eclipse plugin, based on:

 Xtext, ANTLR

 Sculptor (tactic DDD DSL)

 Creator: S. Kapferer

 Term projects and Master thesis @ HSR FHO

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 9

SK: Shared Kernel, PL: Published Language

D: Downstream, U: Upstream

ACL: Anti-Corruption Layer, OHS: Open Host Service

http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
http://www.methodsandtools.com/archive/archive.php?id=97

Context Mapper: DSL implements Meta-Model and Semantics

 A Domain-Specific Language (DSL) for DDD:

 Formal, machine-readable DDD Context Maps via editors and validators

 Model/code generators to convert models into other representations

 Model transformations for refactorings (e.g., “Split Bounded Context”)

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 10

Plugin update site: https://dl.bintray.com/contextmapper/context-mapping-dsl/updates/

https://dl.bintray.com/contextmapper/context-mapping-dsl/updates/

Context Mapper: Domain-Specific Language

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 11

ContextMap DDDSampleMap {

contains CargoBookingContext

contains VoyagePlanningContext

contains LocationContext

CargoBookingContext [SK]<->[SK] VoyagePlanningContext

[U,OHS,PL] LocationContext -> [D] CargoBookingContext

VoyagePlanningContext [D]<-[U,OHS,PL] LocationContext

}

DDD relationship patterns

(role of endpoint)

Influence/data flow direction: ->, <->

(upstream-downstream or symmetric)

Bounded Contexts

(systems or teams)

SK: Shared Kernel, PL: Published Language

D: Downstream, U: Upstream

ACL: Anti-Corruption Layer, OHS: Open Host Service

http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
http://www.methodsandtools.com/archive/archive.php?id=97

Tool Big Picture

 Context Mapper

architecture

 Modelled with Context

Mapper DSL

 UML generated

© Olaf Zimmermann, 2020.

Page 12

Agenda Today (And Key Take Away Messages)

1. Context matters

 One size does not fit all (top-level design heuristic: "it depends")

 Strategic and tactic Domain-Driven Design (DDD)

 Context Mapper DSL and tools

2. Contracts rule

 Unified interfaces are great, but not enough

 More SOA and microservices myth busting

 Microservice Domain-Specific Language (MDSL)

3. Components contain (cost and risk)

 Towards a context-driven, contract-first service identification method

 Microservice API Patterns (MAP) to structure the solution space

 (time permitting) Industry trends and resulting research questions

 Microfrontends, containerization, cloud-native 12-factor applications

© Olaf Zimmermann, 2020.

Page 13

"Napkin Sketch" of SOA Realizations (Adopted from G. Hohpe)

Page 14

© Olaf Zimmermann, 2020.

Our focus:

Microservices!

Middleware less popular,

often custom build (term

also used in deployment

and clustering context)

Optional (then

and now)

(data) contracts

Mythbusting (1/4): SOA 1.0 (2003/2004 to 2008/2009)

 Myth: SOA and microservices solve different problems, not comparable

 Application boundaries blurred in the Web age

 See Microservices Tenets article, see OOPSLA practitioner reports

 Myth: Traditional SOA is "heavyweight" and requires centralization and

enterprise-wide data normalization in an Enterprise Service Bus (ESB)

 What is heavyweight (definition)? Resource usage? Maintenance?

 SOAP also uses HTTP by default; JSON not much lighter than "nice" XML

 Have a look at the dependencies of services meshes (example: Istio)

 Most practices recommended today already appeared in the (good) SOA

tutorials in the 2000s

 e.g. no canonical data model, no single point of failure, no business logic in ESB

 Yes, poor SIA implementations did occur (but that also holds for microservices)

 Myth: SOA and XML-based "Web" services are coupled with each other

 Actually, they are less related that REST and HTTP are

 Although REST claims to be an architectural style (only implemented once)

© Olaf Zimmermann, 2020.

Page 15

http://rdcu.be/mJPz

Mythbusting (2/4): Web Services and REST

 Myth: REST is a protocol

 It is an architectural style defined by abstract constraints

 So asking for a “REST API” is like asking for “Gothic window” (material?)

 Myth: SOAP is a protocol

 It is a message exchange format, HTTP typically used for message transfer

 Other protocols (theoretically) possible

 Myth: REST and SOAP can be compared

 Can the Gothic style and concrete building materials/norms be compared?

 Myth: Thought leaders are objective and independent

 There is an “industrial NN complex” (NN = Agile, REST, …)

 To paraphrase M. Fowler at Agile Australia

 Book authors and consultants do have commercial agendas (lie vendors)

 And should not reference their own papers/books only (SOA Design Patterns?)

© Olaf Zimmermann, 2020.

Page 16

A Consolidated Definition of Microservices

 Microservices architectures evolved from previous incarnations of

Service-Oriented Architectures (SOAs) to promote agility and elasticity

 Independently deployable, scalable and changeable services,

each having a single responsibility

 Modeling business capabilities

 Often deployed in lightweight containers

 Encapsulating their own state, and communicating via message-based

remote APIs (HTTP, queueing), IDEALly in a loosely coupled fashion

 Facilitating polyglot programming and persistence

 Leveraging DevOps practices including decentralized continuous delivery

and end-to-end monitoring (for business agility and domain observability)

© Olaf Zimmermann, 2020.

Page 17

Detailed analysis: Zimmermann, O., Microservices

Tenets: Agile Approach to Service Development

and Deployment, Springer Journal of Computer

Science Research and Development (2017)

https://www.ifs.hsr.ch/fileadmin/user_upload/customers/ifs.hsr.ch/Home/projekte/ZIO-CHOpenDay-CCaSAWAv10p.pdf
http://rdcu.be/mJPz

Mythbusting (3/4): Microservices (since 2014)

 Myth: Self-Contained Systems are new, different form MS(A) and

“monolith”

 Evidence: e.g., S. Brown: Modular Monolith

 Myth: Distributed service mesh sidecars are easier to create, configure,

manage than SOA-days ESBs

 Evidence: notion of federated ESBs, EIP pattern mapping

 Open source lock in replacing vendor lock in

 Myth: RESTful HTTP is the only protocol that is required and permitted

 MOM and even RPC have their place

 Evidence: Google gRPC, S. Newman first book on Microservices

 Myth: Unified interface is sufficient as contract

 The success of Swagger/Open API Specification suggests that more

elaborate API Descriptions are required

 Data contract, pre- and postconditions, error handling, …

© Olaf Zimmermann, 2020.

Page 18

https://www.youtube.com/watch?v=5OjqD-ow8GE
https://microservice-api-patterns.org/patterns/foundation/APIDescription.html

OpenAPI Specification (OAS): An Interface Definition Language (IDL)

 Wikipedia lists (only) 23 IDLs

 OAS is one of them

 Bound to HTTP

© Olaf Zimmermann, 2020.

Page 19

https://en.wikipedia.org/wiki/Interface_description_language
http://swagger.io/

Contracts in Microservice Domain-Specific Language (MDSL)

Page 20

How does this notation compare

to Swagger/JSON Schema

and WSDL/XSD?

© Olaf Zimmermann, 2020.

 Data contract

 Compact, technology-neutral

 Inspired by JSON, regex

 Endpoints and operations

 Elaborate, terminology from

MAP domain model

 Abstraction of REST resource

 Abstraction of WS-* concepts

 API client, provider, gateway;

governance (SLA, version, …)

Reference: https://socadk.github.io/MDSL/index

https://socadk.github.io/MDSL/index

Mythbusting (4/4): (Micro-)Services Design

 Myth: Services always must be small/fine-grained

 How to measure? How to observe?

 What about dependencies? They increase.

 Myth: A business capability has to be a function

 And Entity Service (always) are an anti pattern

 Archive? Logbook? File share?

 Myth: The DDD patterns fully solve the decomposition problem

 Process required (and related knowleddge/patterns), see here and here

 Subdomains and Aggregates and Bounded Contexts (BCs) are as hard to

find as services, so "turn BC into microservice" only delegates the problem

 Myth: “Hello World” implementations are suited to demonstrate the

value and price of microservices

 Domain model needs to have a certain size and complexity e.g., to see

ramifications of replication, eventual consistency (see Lakeside Mutual)

© Olaf Zimmermann, 2020.

Page 21

https://ifs.hsr.ch/index.php?id=15266&L=4
https://ifs.hsr.ch/index.php?id=15666&L=4
https://github.com/Microservice-API-Patterns/LakesideMutual

Agenda Today (And Key Take Away Messages)

1. Context matters

 One size does not fit all (top-level design heuristic: "it depends")

 Strategic and tactic Domain-Driven Design (DDD)

 Context Mapper DSL and tools

2. Contracts rule

 Unified interfaces are great, but not enough

 More SOA and microservices myth busting

 Microservice Domain-Specific Language (MDSL)

3. Components contain (cost and risk)

 Towards a context-driven, contract-first service identification method

 Microservice API Patterns (MAP) to structure the solution space

 (time permitting) Industry trends and resulting research questions

 Microfrontends, containerization, cloud-native 12-factor applications

© Olaf Zimmermann, 2020.

Page 22

DDD Applied to (Micro-)Service Design

 M. Ploed is one of the “go-to-guys” here (find him on Speaker Deck)

 Applies and extends DDD books by E. Evans and V. Vernon

© Olaf Zimmermann, 2020.

Page 23

Reference: JUGS presentation, Bern/CH, Jan 9, 2020

https://speakerdeck.com/mploed
https://speakerdeck.com/mploed/microservices-love-domain-driven-design-version-2

DDD and Service Identification/Design

https://preview.microservice-api-patterns.org/patterns/tutorials/tutorial2

© Olaf Zimmermann, 2020.

Page 24

Input: analysis model, NFRs

Output: API contracts (here: MDSL)

Tasks: Select pattern, refine design, refactor

https://preview.microservice-api-patterns.org/patterns/tutorials/tutorial2

Calls to Service Operations

Page 25

© Olaf Zimmermann, 2020.

PayloadHeader
Envelope

Header Payload

Wrapper

Payload

Header Payload

Wrapper

Envelope

https://www.enterpriseintegrationpatterns.com/patterns/messaging/CommandMessage.html

Sample request

message

(note: PUTs and POSTs

would look different)

Response

message

structure

{[…]}

{[…]}

are EIP-style Messages

{[…]} -- some JSON (or other MIME type)

+/-?

Embed nested

entity data?

or

Link to sparate

iresource?

https://www.enterpriseintegrationpatterns.com/patterns/messaging/CommandMessage.html

Introducing… Microservice API Patterns (MAP)

 Identification Patterns:

 DDD as one practice to

find candidate endpoints

and operations

 Evolution Patterns:

 Recently workshopped

(EuroPLoP 2019)

© Olaf Zimmermann, 2020.

Page 26

http://microservice-api-patterns.org

http://microservice-api-patterns.org/

Microservices API Patterns (MAP): Pattern Index by Category

Page 27

© Olaf Zimmermann, 2020.

http://microservice-api-patterns.org

EuroPLoP 2019

EuroPLoP 2017

EuroPLoP 2018

http://microservice-api-patterns.org/

API Description Pattern

 Which knowledge should be

shared between an API

provider and its clients?

 How should this knowledge

be documented?

© Olaf Zimmermann, 2020.

Page 28

https://microservice-api-patterns.org/patterns/foundation/APIDescription.html

https://microservice-api-patterns.org/patterns/foundation/APIDescription.html

MAP Example: Pagination (1/2)

 Context

 An API endpoint and its calls have been identified and specified.

 Problem

 How can an API provider optimize a response to an API client that should

deliver large amounts of data with the same structure?

 Forces

 Data set size and data access profile (user needs), especially number of

data records required to be available to a consumer

 Variability of data (are all result elements identically structured? how often

do data definitions change?)

 Memory available for a request (both on provider and on consumer side)

 Network capabilities (server topology, intermediaries)

 Security and robustness/reliability concerns

Page 29

© Olaf Zimmermann, 2020.

MAP Example: Pagination (2/2)

 Solution

 Divide large response data sets into manageable and easy-to-transmit chunks.

 Send only partial results in the first response message and inform the consumer

how additional results can be obtained/retrieved incrementally.

 Process some or all partial responses on the consumer side iteratively as

needed; agree on a request correlation and intermediate/partial results

termination policy on consumer and provider side.

 Variants

 Cursor-based vs. offset-based

 Consequences

 E.g. state management required

 Know Uses

 Public APIs of social networks

Page 30

© Olaf Zimmermann, 2020.

Mini-Exercise: Can MAP serve as a map/guide to API design?

 Let’s have a look at the language organization and selected patterns…

 http://microservice-api-patterns.org

 Website public since 2/2019; experimental preview site available to beta testers

 Sample patterns (suggestions):

 Request Bundle, Embedded Entity, Wish List, API Key, Two in Production

 Questions:

 Do you agree with our hypothesis: knowledge on API design is beneficial?

 Do names and icons work for you/make sense/communicate the essence?

 Would you have expected different patterns?

 How about template and category structure?

 E.g. quality category

 E.g. implementation hints (not on website, but in EuroPLoP papers)

 Which coupling criteria matter for (micro-)service decomposition?

© Olaf Zimmermann, 2020.

Page 31

http://microservice-api-patterns.org/
https://microservice-api-patterns.org/

Key Messages of this Talk

 It is the API contract (and its implementations) that make or break

projects – not (or not only) middleware and tools

 Frameworks and infrastructures come and go, APIs stay

 Microservice API Patterns (MAP) language/components

 Public MAP website now available in Version 1.2.1

 20+ patterns, sample implementation in public repo, supporting tools

 Microservices Domain-Specific Language (MDSL)

 Uses MAPs in service contracts (as decorators)

 Can be generated from DDD bounded contexts

 Context Mapper tool supporting strategic Domain-Driven Driven

Design (DDD) and architectural refactoring

 Other tools emerging

 Research areas (ZIO):

 Service modeling, identification, decomposition, refactoring

© Olaf Zimmermann, 2020.

Page 32

https://microservice-api-patterns.org/

Teaser Question Revisited

 You had been tasked to develop a RESTful HTTP API for a master data

management system that stores customer records and allows sales staff to

analyze customer behavior. The system is implemented in Java and Spring.

A backend B2B channel uses message queues (RabbitMQ).

 What do you do (now)?

a) I hand over to my software engineers and students because all I manage to

do these days is attend meetings and write funding proposals.

b) I annotate the existing Java interfaces with @POST and @GET, as defined in

Spring MVC or JAX-RS etc . and let libraries and frameworks finish the job.

c) I install an API gateway product in Kubernetes and hire a sys admin, done.

d) I design a service layer (Remote Facade with Data Transfer Objects) and

publish an Open API Specification (f.k.a. Swagger) contract. I worry about

message sizes, transaction boundaries, error handling and coupling criteria

while implementing the contract. To resolve such issues, I create my own

novel solutions. Writing infrastructure code and test cases is fun after all!

e) I leverage Context Mapper, MDSL, MAP for API design and evolution

© Olaf Zimmermann, 2020.

Page 33

FROM DOMAIN-DRIVEN DESIGN

TO MICROSERVICE APIS

OF QUALITY AND STYLE –

BACKUP CHARTS

Prof. Dr. Olaf Zimmermann (ZIO)

Certified Distinguished (Chief/Lead) IT Architect

Institute für Software, HSR FHO

ozimmerm@hsr.ch

GI-Arbeitskreis Microservices und DevOps

Berlin, March 9, 2020

DDD Applied to (Micro-)Service Design ctd., Source:

 N. Tune and S. Millett: Designing Autonomous Teams and Services

 Describe how to coevolve organizational and technical boundaries to

architect autonomous applications and teams based on DDD Bounded

Contexts and (micro-)services.

 O. Tigges: How to break down a Domain to Bounded Contexts

 Presents criteria to be used to identify Bounded Contexts.

 R. Steinegger et al.: Overview of a Domain-Driven Design Approach to

Build Microservice-Based Applications

 Describes a development process to build MSA applications based on the

DDD concepts, emphasizing the importance of decomposing a system in

several iterations.

 A. Brandolini: Introducing Event Storming

 Proposes a workshop-based technique to analyze a domain and discover

bounded contexts, following events through the system/business process

and detecting commands, entities (and more) along the way.

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 35

https://www.oreilly.com/library/view/designing-autonomous-teams/9781491994320/
https://speakerdeck.com/otigges/how-to-break-down-a-domain-to-bounded-contexts
https://www.semanticscholar.org/paper/Overview-of-a-Domain-Driven-Design-Approach-to-Steinegger-Giessler/c27543389bf0f9d5ac337963c474496979ef2a2d
https://leanpub.com/introducing_eventstorming

From DDD to RESTful HTTP APIs

 “Implementing DDD” book by V. Vernon (and blog posts, presentations):

 No 1:1 pass-through (interfaces vs. application/domain layer)

 Bounded Contexts (BCs) realized by API provider: one service API and IDE

project for each team/system BC (a.k.a. microservice)

 Aggregates supply API resources (or responsibilities) of service endpoints

 Services donate top-level (home) resources in BC endpoint as well

 The Root Entity, the Repository and the Factory in an Aggregate suggest

top-level resources; contained entities yield sub-resources

 Repository lookups as paginated queries (GET with search parameters)

 Additional rules of thumb (from our experience and additional sources):

 Master data and transactional data go to different contexts/aggregates

 Creation requests to Factories become POSTs

 Entity modifiers become PUTs or PATCHes

 Value Objects appear in the custom mime types representing resources

© Olaf Zimmermann, 2020.

Page 36

https://www.youtube.com/watch?v=lUCLFOISuXk
https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/DDD_Aggregate.html
http://gorodinski.com/blog/2012/04/14/services-in-domain-driven-design-ddd/
https://martinfowler.com/eaaCatalog/repository.html
https://microservice-api-patterns.org/
https://www.ifs.hsr.ch/index.php?id=15666&L=4

SOA 1.0: WSDL (XML Language for Service Descriptions)

Page 37

© Olaf Zimmermann, 2018.

 WSDL document elements

 Type definitions and imports

 Interface description (Port

Type, Operations, Messages)

 Extensible binding section

 Implementation description

(Ports)

 WSDL SOAP binding

 Defines header and fault

support

 Extensibility element for

addressing

 HTTP binding also defined

“type

definition”

faultfault

port

Containment

Relationship

Linked-to

Relationship

binding

operation

input output fault

operation

1

1

n

n

port

binding

service

n

message

operation

types

“type

definition”

n
element /

type

message

part

n

part

input output fault

operation

1
1

n

message

message

portType

n

type

identical name attributes

identical name attributes

or element names

Logical relationships between WSDL elements

Web Services Description Language (WSDL)

Technical Service Contract in WSDL (DDD Sample Application)

 XML elements for

operation parameters

 a.k.a. message parts

 XML complex types for

nontrivial DTOs

 XML basic types for

scalar DTOs

Page 38

© Olaf Zimmermann, 2018.

https://github.com/joolu/ddd-sample/blob/master/src/main/resources/HandlingReportService.wsdl

 Entity-relationship model

 Use cases

 System characterizations

 Aggregates (DDD)

Coupling information is

extracted from these artifacts.

Service Cutter (Proc. Of ESOCC 2016, Springer LNCS)

Advisor: Prof. Dr. Olaf Zimmermann

Co-Examiner: Prof. Dr. Andreas Rinkel

Project Partner: Zühlke Engineering AG

Bachelor Thesis Fall Term 2015

Software Lukas Kölbener Michael Gysel

A Software Architect’s Dilemma….

Step 1: Analyze System

Step 2: Calculate Coupling

Step 3:

Visualize Service Cuts

How do I split

my system into

services?

 Data fields, operations and artifacts

are nodes.

 Edges are coupled data fields.

 Scoring system calculates edge

weights.

 Two different graph clustering

algorithms calculate candidate

service cuts (=clusters).

A clustered (colors) graph.

Technologies:

Java, Maven, Spring (Core,

Boot, Data, Security, MVC),

Hibernate, Jersey, JHipster,

AngularJS, Bootstrap

The catalog of 16 coupling criteria

https://github.com/ServiceCutterA clustered (colors) graph.

 Priorities are used to

reflect the context.

 Published Language

(DDD) and use case

responsibilities are

shown.

Coupling Criteria (CC) in “Service Cutter” (Ref.: ESOCC 2016)

 E.g. Semantic Proximity can be observed if:

 Service candidates are accessed within same use case (read/write)

 Service candidates are associated in OOAD domain model

 Coupling impact (note that coupling is a relation not a property):

 Change management (e.g., interface contract, DDLs)

 Creation and retirement of instances (service instance lifecycle)

Page 40

Full descriptions in CC card format: https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

© Olaf Zimmermann, 2020.

https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

Open Research Problem: Refactoring to Microservices

Page 41

Research Questions

How to migrate a modular monolith to a services-based cloud application

(a.k.a. cloud migration, brownfield service design)?

Can “micro-migration/modernization” steps be called out?

Which techniques and practices do you employ? Are you content with them?

© Olaf Zimmermann, 2020.

SummerSoC 2019: Joint Work with University to Pisa

Reference: Brogi, A., Neri D., Soldani, J., Zimmermann, O., Design Principles, Architectural Smells and

Refactorings for Microservices: A Multivocal Review. CoRR abs/1906.01553 and Springer SICS (2019, to appear)

© Olaf Zimmermann, 2020.

Page 42

